Self-priming determines high type I IFN production by plasmacytoid dendritic cells

European Journal of Immunology, 2014, DOI: 10.1002/eji.201343806, Volume 44, Issue 3, pages 807–818 published on 16.01.2014
European Journal of Immunology, online article
Plasmacytoid dendritic cells (pDCs) are responsible for the robust and immediate production of type I IFNs during viral infection. pDCs employ TLR7 and TLR9 to detect RNA and CpG motifs present in microbial genomes. CpG-A was the first synthetic stimulus available that induced large amounts of IFN-α (type I IFN) in pDCs. CpG-B, however, only weakly activates pDCs to produce IFN-α. Here, we demonstrate that differences in the kinetics of TLR9 activation in human pDCs are essential for the understanding of the functional difference between CpG-A and CpG-B. While CpG-B quickly induces IFN-α production in pDCs, CpG-A stimulation results in delayed yet maximal IFN-α induction. Constitutive production of low levels of type I IFN in pDCs, acting in a paracrine and autocrine fashion, turned out to be the key mechanism responsible for this phenomenon. At high cell density, pDC-derived, constitutive type I IFN production primes pDCs for maximal TLR responsiveness. This accounts for the high activity of higher structured TLR agonists that trigger type I IFN production in a delayed fashion. Altogether, these data demonstrate that high type I IFN production by pDCs cannot be simply ascribed to cell-autonomous mechanisms, yet critically depends on the local immune context.  

TU München
Helmholtz München
MPI of Neurobiology
MPI of Biochemistry