A Novel Two-Stage Tandem Mass Spectrometry Approach and Scoring Scheme for the Identification of O-GlcNAc Modified Peptides
26-Mar-2011
American Society for Mass Spectrometry, 2011, DOI: 10.1007/s13361-011-0107-y, Volume 22, Number 5, 931-942 published on 26.03.2011
American Society for Mass Spectrometry, online article
American Society for Mass Spectrometry, online article
The modification of serine and threonine residues in proteins by a single N-acetylglucosamine (O-GlcNAc) residue is an emerging post-translational modification (PTM) with broad biological implications. However, the systematic or large-scale analysis of this PTM is hampered by several factors, including low stoichiometry and the lability of the O-glycosidic bond during tandem mass spectrometry. Using a library of 72 synthetic glycopeptides, we developed a two-stage tandem MS approach consisting of pulsed Q dissociation (PQD) for O-GlcNAc peptide detection and electron transfer dissociation (ETD) for identification and site localization. Based on a set of O-GlcNAc specific fragment ions, we further developed a score (OScore) that discriminates O-GlcNAc peptide spectra from spectra of unmodified peptides with 95% sensitivity and 999% specificity. Integrating the OScore into the two-stage LC-MS/MS approach detected O-GlcNAc peptides in the low fmol range and at 10-fold better sensitivity than a single data-dependent ETD tandem MS experiment.