Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator

PNAS, vol. 112, no. 36, 11377–11382, doi: 10.1073/pnas.1514209112

PNAS, online article

In vivo Ca2+ imaging of neuronal populations in deep cortical layers has remained a major challenge, as the recording depth of two-photon microscopy is limited because of the scattering and absorption of photons in brain tissue. A possible strategy to increase the imaging depth is the use of red-shifted fluorescent dyes, as scattering of photons is reduced at long wavelengths. Here, we tested the red-shifted fluorescent Ca2+ indicator Cal-590 for deep tissue experiments in the mouse cortex in vivo. In experiments involving bulk loading of neurons with the acetoxymethyl (AM) ester version of Cal-590, combined two-photon imaging and cell-attached recordings revealed that, despite the relatively low affinity of Cal-590 for Ca2+ (Kd = 561 nM), single-action potential-evoked Ca2+ transients were discernable in most neurons with a good signal-to-noise ratio. Action potential-dependent Ca2+ transients were recorded in neurons of all six layers of the cortex at depths of up to −900 µm below the pial surface. We demonstrate that Cal-590 is also suited for multicolor functional imaging experiments in combination with other Ca2+ indicators. Ca2+ transients in the dendrites of an individual Oregon green 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid-1 (OGB-1)-labeled neuron and the surrounding population of Cal-590-labeled cells were recorded simultaneously on two spectrally separated detection channels. We conclude that the red-shifted Ca2+ indicator Cal-590 is well suited for in vivo two-photon Ca2+ imaging experiments in all layers of mouse cortex. In combination with spectrally different Ca2+ indicators, such as OGB-1, Cal-590 can be readily used for simultaneous multicolor functional imaging experiments.

 

 

Campus Movie 2020

CIPSM Movie

Campus Movie 2012

CIPSM Movie
LMUexcellent
TU München
MPG
Helmholtz München
MPI of Neurobiology
MPI of Biochemistry